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Abstract—A thin cylindrical elastic tube, reinforced on the outer surface by a two parameter
family of inextensible cords, is deformed in such a way that the inner surface assumes a given
shape. A previous solution for this problem, valid only when the curvature of the deformed inner
surface is continuous everywhere, is extended to the more general case where the curvature
possesses discontinuities. The method of matched asymptotic expansions is used to construct
the solution in the neighborhood of a discontinuity, and to join it smoothly with the earlier
solution, which is shown to remain valid away from the discontinuity.

The deformation described here occurs, for example, when a reinforced elastic tube is
deformed due to an enclosed rigid mold or mandrel and an applied external pressure.

1. INTRODUCTION

The mathematical theory of finite elasticity is well established and several exact solutions to
the governing equations have been obtained which describe a variety of deformations.t
However, because the equations are highly non-linear, the number of such solutions is
small, and remains so even with the simplifications which result from the assumption of a
particular strain energy function, such as the Mooney—Rivlin[3, 4] or the neo-Hookean[5]
form. Furthermore, exact solutions can usually be found only when the symmetry of the
deformation is such that the equations can be reduced to a suitable form. Therefore, while
these solutions are of great importance to the general theory, it cannot be expected that
such solutions can be obtained for a problem which arises in practice. For this reason con-
siderable effort has been devoted to the development of numerical and approximation
techniques. Although the approximation techniques used so far assume a variety of forms,
such as small deformations superposed on large deformations[6], perturbations of the strain
energy function[7, 8], successive approximations [1, 2], or expansions in terms of a geometri-
cal parameter[9], they are essentially similar in that they are in general all regular perturba-
tion expansions. In this paper a singular perturbation technique is used to obtain the solution
to a problem which has been previously solved for a restricted case by the use of regular
perturbations[10].

The problem discussed here generalizes an earlier study of cylindrical deformations of an
infinitely long elastic tube initially of circular cross section with inner radius r; and uniform
thickness #,. The tube is reinforced on its outside surface by a two parameter family of
inextensible cords making constant angles +o« with the generators of the surface. It is

t See for example [1, 2].
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deformed under the action of a uniform pressure P* on its outer surface and normal com-
pressive surface forces on its inner surface in such a way that the cross section of the inner
surface becomes a given closed curve ¢. The deformation can be realized physically by
inserting a frictionless, rigid mold of given cross section into a circular cylindrical tube and
applying a uniform external pressure.

A cross section of the deformed and undeformed configurations is shown in Fig. 1.
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{a) Undeformed {b} Deformed

Fig. 1. Cross section of the cylinder.
(a) undeformed (b) deformed,

It was found that the solution at any point in the deformed body depends on the curva-
ture of the inner surface at that point. If the curvature « is discontinuous at a point, the
solution obtained in{10] is also discontinuous at that peoint and the regular perturbation
method cannot be applied. The case of a discontinuous curvature is examined in this paper.
It is shown that the solution obtained in[10] still applies away from the point of discontinuity
in x, and a singular perturbation technique is used to develop a solution valid around the
point of discontinuity which matches, away from it, the solution given in[10].

In Section 2 of this paper the problem is formulated and the solution for continuous
curvature is summarized. This section is considerably abbreviated and the reader is referred
to[10] for the details and further discussion.

The asymptotic expansion for the solution near a discontinuity is obtained in Section 3
and equations and boundary conditions which determine the deformation in this region are
derived. It is shown in Section 4 that the problem reduces to the solution of the biharmonic
equation on an infinite strip if there is no extension of the tube in the axial direction. This
problem is solved by means of an eigenvalue expansion. The case where the tube is extended
in the axial direction is solved in Section 5.

2. FORMULATION OF THE PROBLEM

Let (x, y, z) denote an orthogonal Cartesian coordinate system with the z-axis coinciding
with the axis of the undeformed cylinder and (r, 8, z) denote the corresponding cylindrical
coordinate system with x = r cos 0, y = rsin 0, z = z. A point in the undeformed body with
¢ylindrical coordinates (r; + Ay t, 0, z) is displaced under the deformation to the point with
Cartesian coordinates (r, X(t, 8), r, Y(1, 0), Iz) where the functions X(t, ), Y(t, #) and the
constant extension ratio / are to be determined.

For an elastic, incompressible, homogeneous and isotropic material possessing a strain
energy function of the neo-Hookean formt W = C(J; — 3) suggested by Rivlin[5], the

+ Since the deformations considered are plane, the analysis is also valid, with minor modifications, for the
more general Mooney-Rivlin material.
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governing equations are

UX, Yy — X, Y,) = &(1 + 1)
(1+e) (Xp X+ Yo ¥,) +e(1 +et)(X, Xg+ Y, Yy)
+ 65Xy Xgo + Yy Yop) +62(1 +61)2Qy =0 (2.1
A+ X, X, + Y, Y,)+e(l +et) (X2 + YD)
+ 83X, Xgo + Y, Ygo) + &2(1 + e1)%Q, =0,

where 2CQ(t, 0) denotes the hydrostatic pressure in the material and

& = hylry. 2.2)
The boundary conditions are
X2+ Yi=0131+¢e? t=1 (2.3)
X, Xo+ Y, Y, =0, t=0 2.9
1
B+ 0P [+ 0+ P| = THw Vo= Xy Vg 1= 2.5)
0
1
A (X, X+ Y, Yp) =¢Ty, t=1 (2.6)
)]
X(0, 0) = L{(s), Y(0, 0) = L&(s), 0<s<1 2.7
where
lo = (sin a)’lw/l — 1% cos? a (2.8)
and
T= T*/2Cr, 2.9)

is the non-dimensional tension per unit length applied across a generator of the reinforcing
material. The non-dimensional applied pressure is defined by P = P*/2C. Equation (2.3)
expresses the inextensibility of the cords, (2.4) the absence of shear forces on the inner
surface, and (2.5), (2.6) the equilibrium of the reinforcing material. Equation (2.7) specifies
the shape of the inner surface in terms of the functions {(s) and &(s), which satisfy

(r4+éE2=1 (2.10)
and
{Oy=4/L, &0)=0, {©0)=0 (2.11)

where A is a non-dimensional constant. The restrictions (2.11) fix the position of the deformed
body.

Details of the derivation of the governing equations (2.1) and the boundary conditions
(2.3-2.7) may be found in[10].

The problem formulated above was solved in[10] by means of a perturbation solution
applicable when ¢, the ratio of the thickness 4, of the undeformed tube to its inside radius
ry, is small compared to unity. The dependent variables X, Y and Q, as well as the
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independent variable 6, were expanded in a series in ¢ with coeficients which are functions
of t and a new non-dimensional independent variable ¢ such that 6 is an increasing
function of ¢ and 6 = 0 when ¢ = 0. The solutions obtained are

X =L{s)+¢ il E(s) + 82{ t(t — D[y — x()]E(s) + T tZC'(s)K’(s)> + 0(e?)
1y 2L

1
21%13

) T ,
Y = LE(s) — s— U(s)+ ¢ {21212 t(t — D[y — k()] (s) + 5% tzé’(s)x'(s)} +0(e%)  (2.12)

1,
1 1+ 121 2
Q: —P — 1212 TOK(S)+8{|:'—13‘[?)—“ K(S)—PE](I— 1)
[ ] k(0) — TI(O)] rc(s)} + 0(e?)
lo
where
5= % é (2.13)

and

0= ¢ + eay(@) + e%ay() + -+ (2.14)

¢ = 0 — ea;(0) + e*[a,(0) ay(0) —ay(0)] + - --

The curvature of ¢ is denoted by x(x)/r,, where
1
Kk(n) = i [L'me"(m) — &'l ] (2.15)

The q; are given by

a(9) = i3 = [Tt ~ ] ae
a)(¢) = E_LT [<'() = KO + 57273 f:[lcz(r) — 3l k(1) + 21713] dx. (2.16)
] 0
The tension T(¢) is

2+ 2023 — T, PI2[ll, + 2x(0)) + 2T, (0)313
20%73

T=T(0) + 6% [k(s) — k(0)] + & (2.17)
0

[k(s) — x(0)] + O(e*)

where T(0) = T, + £T,(0) + &2T,(0) + ... is the value of T at ¢ = 0. Since the cords can
support a load of any order, the tension must be specified arbitrarily at some point, and this
is done by giving T(0). In the remainder of this paper it will be assumed that 7, = 0, so that
the loading on the cords vanishes as £ — 0. In this case (2.17) is replaced by

1+ 7%3

0} [k(s) — K(O)]}. (2.18)

1
T=c¢eT(0) + SZ{TZ(O) + [ —i
1415

iy

Expressions for the stresses and a discussion of these solutions can be found in [10].

T(0) +
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3. THE CASE OF DISCONTINUOUS CURVATURE

The solutions shown in the previous section are discontinuous at those values of ¢ for
which the curvature x of the inner surface is discontinuous. Since it is clear physically that a
discontinuity in the curvature of the prescribed shape of the inner surface cannot produce
jumps in the displacements, stresses, etc. at that point, the expansion must be invalid in the
neighborhood of discontinuities in x. The reason for the breakdown of the solution is that
the expansion used in[10] is equivalent to the assumption that derivatives with respect to
0 are small compared to derivatives with respect to t. However, in the neighborhood of a
discontinuity in x the dependent variables change rapidly along the tube and can no longer be
regarded as small compared to derivatives across the tube. It will be shown that these
solutions still apply for values of § bounded away from any discontinuity in curvature by
constructing a local solution which describes the deformation in the neighborhood of the
discontinuity and provides a smooth transition between the solutions on either side of the
discontinuity.

For simplicity, the coordinate system is chosen so that the discontinuity in curvature
occurs at 8 = ¢ = 0 and {(0) = &(0) = {'(0) = O (c.f. (2.11)). In order to obtain a solution
near 6 = 0 in the limit ¢ — O new independent variables must be introduced. These variables,
defined by

n = Ofe, T=1, 3.1

have the property that the limit ¢ — 0, n, 7 fixed, implies 8 — 0, and so are the appropriate
variables to describe the solution in this regiont.
The dependent variables expressed as functions of # and 7 are denoted by
X(z,n) = X(t, 0)
Yz, n) = Y01, 0)
Oz, n) = Q(t, 6)
T(n) = T(9).
In terms of these variables the governing equations take the form
X, 7, - 7.8,)=¢(1 +¢7)
(1 +e)*(X, X + ¥, Vo) + 61 + e00(X,. X, + V. ¥))
+ X, X+ 5, V) +(1+60%0,=0 (3.3)
(1 + e’ (X X + T P + el + e)(X2 + T2) + (XX,
+ 1, %,) + 21 + 61?0, =0

(3.2)

and the boundary conditions are

Xx,+7%7%=0 1=0
X2+ V72 =850 +¢)? T=
1 N R
1383(1+8)3(m +Q+P)=T(X,,,, ,-%X,%) =1 (3.4
a1 5 & o
— =— (XX 4 =
m ”O(,”+Y,”) =1

XO,m=Lis), YO, n) = LES).

t The ¢ in (3-1) may be replaced by an arbitrary function f(¢) with the property f(€)—>0, e—0. It is then
found in the course of the analysis that the only possible choice is f(¢)=¢. For simplicity, this choice is
made at the outset.
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Additional conditions are provided by the requirement that the solution as # — + oo or
#-» — o0 must match the solution obtained in [10] as 6 - 0% or § -0, respectively.
Therefore, in order to determine these conditions, as well as the nature of the asymptotic
series describing the solution in the transition layer, it is necessary to study the behavior of
the solutions (2.12) as # — 0. This is done by rewriting these solutions in terms of # and =
and expanding the result as a series in g, since, as already pointed out, the limit ¢ >0,
fixed, implies 6 — 0.

It is necessary, therefore, to determine ¢(n). Combining (2.14), and (3.1); and expanding
in ¢ yields

b = on— 22 (g‘ol— 1)y (3.9)

where k¢ , kg are the limits of x as 6 — 0" and 8 — 0™ respectively, and kg or kg is used in
(3.5) for >0 and n <0, respectively. Substituting (3.5) into the solutions (2.12) and

expanding in ¢ gives
T 1 /12 K& kE12
XN _ 2 N 1 _ _0) 2}
AR {110 ( ’)( )" 2"

i
Y~siorg+s{zcom+lo( " } (3.6)
0

2

1 L+ 120
0~ = P = ol a1 - oo

where again k' and kg are used for # > 0 and n < 0, respectively. Clearly, the leading term
in each of these expressions is the same as n — 0% or 5 — 07, the discontinuity appearing
only in terms of &* or higher in X and Y and in ¢ or higher in Q. From this it follows that
the appropriate expansion for the transition layer is

)A((r,ms)~e—f— +2U(t, )+ ...

i,

Yz, n;8) ~elon + 2V, n) + ... (3.7

o 1

O, ;) ~ »P«—Pl—l +eW(lt, )y + ...

4]

and that the matching conditions are

+ 2
LAY PR AT foz
v- llo( T( /) "

Ko
V—+ KO nt+ it — 71-) (3.8)
0
1+ 128 2
0 o

as # — + oo, where k3 is used for # - + o0 and x5 for y - —co.
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Equations for U, ¥ and W are obtained by substituting (3.7) into (3.3) and retaining the
leading terms. This gives

1
U, +—V,=1
ly
lO( V‘tt + V)m) + Wr] = 0 (39)

1 1
— (U, U, — + W, =0.
llo ( 1T + rm) + (”0)2 + T

The boundary conditions are derived by substituting the expansions (3.7) into (3.4).
Assuming the tension T\(y) can be expanded in the form

T(n) = eZ,(n) + 2Z,(n) + ... (3.10)
the boundary conditions are
1
mU,,+lth=0 =0 (3.11)
V=1l t=1 (3.12)
nkw=2zuU,, t=1 (3.13)
%Z;Il =0 (3.14)
dd_Zr12 =(—”:)T(U,,+113V,) =1 (3.15)
U, 0) = —3xElin* n=20, 1=0. (3.16)

It follows from (3.14) that
Z; = constant = T,(0).

Therefore, the cord tension is constant throughout to first order in e.
Introducing the change of variables

A=1Iy\/In (3.17)
and

U—l(cp+rz) 3.18
A 2/ (3.18)

it can be seen that equation (3.9), implies the existence of a stream function ¥(z, ) such that
V=-%, o=/IY,. (3.19)
Substituting (3.19) into (3.9), ; and eliminating W gives an equation for W¥':

‘Prrn + )'lllttrm + \Ilrmtm (3.20)

1JSS Vol. 10 No. 12—D
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where
A=l + i (3.21)
ll2 )
Boundary conditions for ¥ are obtained from (3.11)—(3.13) and (3.16):
1
E ¥, — ¥ =0 1=0 (3.22)
¥, = —1//1 =1 (3.23)
/
Y., + U, = T,(0) r Yoy T=1 (3.24)
Y, = —ikg 7% > 0, =0

(3.25)
Y, = —iKg —\—/—iﬁzn<0, =0
where (3.9), was used to eliminate W in obtaining (3.24) from (3.13).
The matching conditions (3.8), , can be written in terms of the stream function as

25 + /

\Pa—’_ﬂ"—"_—w(l—"—")—%xg—"ﬁ (3.26)
0 110 \/7

for 5 - + 0. The integration constant which results when (3.26) is obtained from the

expressions for ¥, and ¥, (i.e. (3.8), ,) is zero since there is no transition layer when kg = kg

and ¥ must reduce to

Tzﬁ KO 1 A ( ) % A3
= —=———75 — —=HT
) 10 13/2 \ﬂ n Ko — \/ n
where x, = kg = K.
Equation (3.20), the boundary conditions (3.22)—(3.25), and the matching condition (3.26)

determine the function ¥, defined on the infinite strip —0 </ < +0,0<7< 1. Once ¥
is obtained, Z, can be found from (3.15) and W can be found from

__ 1 2
) W( "+\/1) ;[ 0t = g = b

+ # TOWangl =..  (3.27)

]

Equation (3.27) was derived by integrating (3.9); and applying the boundary condition
(3.13).

The stress in the transition layer can also be obtained from these solutions. For example,
Z,;, the normal stress on a surface r = constant, is given in[10] as

I, (+ et)?

+
2C lz(x,,+y9) Q.
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Introducing the variables (n, 7) and the expansion (3.7) and expanding the results in ¢ shows
that in the transition layer
I 2 2
E——-P+6{W—12—13V,,+mr}. (3.28)
4. THE TRANSITION LAYER SOLUTION

In this section the problem for ¥ formulated above will be simplified by introducing two
restrictions. The first is that / = 1. It then follows from (2.8) that /, = 1, and from (3.21) that
A = 2, so that equation (3.20) for ¥ becomes the biharmonic equation.} The same result is
obtained under the weaker condition that / — 1 is of order ¢. Physically this means that
there is no movement (/ = 1) or very slight movement (/ — 1 = 0(¢)) in the axial direction.
When / = 1 the length L of the curve ¢, the cross section of the inside surface of the deformed
cylinder, is given by L = 27 + &2 where § depends on the shape of ¢ and is given in[10], and
27 is the nondimensional circumference of the undeformed cylinder. When 7 — 1 = 0(¢),
then L — 27 = 0(¢). Therefore, if the length of the inner surface differs in the undeformed
and deformed states by at most 0(¢), the transition layer at a discontinuity in curvature is
described by the biharmonic equation.

The second restriction is that T;(0) = 0. It has already been pointed out that the tension is
constant to 0(¢), and that this constant, 7,(0), represents an applied load. It is therefore
assumed that any applied load is 0(¢?), which is the same order as the tension induced in the
cords by the elastic material as a result of the deformation.

Solutions to the biharmonic equation which satisfy the matching conditions at = 4+ oo
and the boundary conditions at T =0, 1 are given by

2 0
Y= —y (% — r) ke — In’kg —nt+ Y (a, + nby)sin(S, t)e " 4.0
k=0
forn > 0, and
2 ©
Y= —y (% —‘r) Ko —¥’kg —nt+ Y (4, + nBysin(§, 1)e 4.2)
k=0

for n <0, where

50 = 2k + 1)-’23. @.3)

The unknown constants a,, b,, A, By are determined by matching ¥, ¥,, ¥,, and
¥, obtained from (4.1) for n > 0 and (4.2) for n < 0, at their common boundary # = 0.
Since ¥ satisfies a fourth order equation in #, it follows that all higher derivatives in 7 will
be continuous at # = 0. These matching conditions give

Za, sin 6, 7 = XA, sin 6.t
2
. . T
Z(—a, 6, + by)sin 6, 1 = (A, 8, + B)sin d, 7 + (— — 1:) [%o]
2 4.4
E(ak 5%( - 2bk 5k)Sin 5,‘ T = Z(Ak 5]% + ZBk 5k)Sin 5k T
Z(—a, 03 + 3b,62)sin 8, 1 = T(A, 83 + 3B, 62)sin 6, T + [x,]
t The biharmonic equation is also obtained for values of / other than /=1, determined by solving the
equation A=2. The subsequent analysis holds with minor modification for deformations with these particular

values of the extension ratio. These special cases will not be specifically investigated here. In the following
analysis, it is assumed that /=/,=1, so that 7j=1.
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where {x,] = k5 — x5 is the jump in the curvature at » = 0. The first and third of these

equations give 4, = g, B, = —b; and the remaining two equations give
2
a = A, = 5% [xo]
k

) 4.5)
by=—B;= 53 [xol
k

If these results are substituted into (4.4), and (4.4), the series can be summed, thereby veri-
fying the matching conditions.

The displacements U and ¥ are obtained simply by differentiating the stream function and
W is determined from (3.27), which gives for n > 0

® 2
W=2t—1)kj — 1)+ [ ko] > —5c0sdte % (4.6)
k=0 (5,‘.
and fory <0
% 2
W=2t—- DKy —1)— [K0] 3. 57 ¢0s 3,1, 4.7)
k=0 Vg

It can easily be seen that W is continuous at # = 0. In particular, from either {(4.6) or (4.7)

W0, 1) = (x§ + k5 — 2)(x — 1). (4.8)

The tension in the cords, Z,(n), can be found by substituting the above solution into
(3.15). This gives, forn <0

%
Zy= [ (=Yoo dn + Zy(~0)

30

4 (4.9)
B {KO] kg{) sin 53( (53;‘ —_ 5-§ 1?) eém + ZZ(_ OO)
and fory > 0
n
Zy = [ (¥~ W) o dn + Z3(0)
4.10)
® 4 2 s
= —[kp] Z sin 9, (—3 + n) e "+ 2[Kko] + Zs(— 0)
k=0 % 0%
where Z,(0) = [x,] + Z,(— o) was found from (4.9). From (4.10) it follows that
[T] = e{Z,(+ ) — Z,(—0)} = 26°[K,]; (4.11)

that is, the jump in tension, [T], is equal to 2¢* times the jump in the curvature. These
results for Z,(n) are shown in Fig. 2.

If the tension at one end of the transition layer is specified (e.g. T{- c0)) the variation in
tension through the layer, and in particular, the total change across the transition layer is
determined. However, while the analysis in[10] does not describe the tension in the transition
layer, it can be shown from those results that [T] = A[x,], where 4 = constant. For the case
considered here (T, = T;(0) = 0, I = 1), 4 = 2¢?, consistent with the result (4.11).
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-4

Fig. 2. Variation of cord tension through the transition layer.

The stress X, in the transition layer is found by substituting the solution into (3.28). This
gives

% + P = —¢g[Kko]2n k:io (Slk cos 8, 1e " (4.12)
for n > 0, and
Zu + P = —¢[ry]2n i I cos &, ted (4.13)
2C k=0 Oy
forn<0.Atz=1,%,,2C=—P +0(?,andat =0
% +P=8[K0]%nlntanhn|n|. (4.14)

This result is illustrated in Fig. 3.

([Z,72C1+PVelk] c025

-0-08 m
-0-{0
-015
-0-20
-0-25
Fig. 3. Variation of normal stress on the inner surface 7=0.
Att =0, Z,; gives the stress applied to the inner surface of the cylinder. In[10] it is found

that £,, + P = 0(¢?) at T = 0 for the case considered here (I = 1, T, = T,(0) = 0). Equation
(4.14) shows that this quantity is an order of magnitude larger in the transition layer.
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Since the stress Z,, at T = 0 cannot be tensile, (4.14) requires
P> e[x] % max{n n tanh 7|n]} = 0.194 e[x,] (4.15)

which gives a lower bound on the magnitude of P. Physically, if (4.15) is not satisfied the
cylinder separates from the enclosed rigid mold which causes the deformation. In particular,
ifP=0,Z,; <0forn<0and X, >0 for n >0, so that the cylinder separates for n < 0.
For this case the boundary condition at t =0, 5 < 0, which specifies the shape of the inner
surface (i.e. equation 3.25,) is replaced by the condition that £,; = 0. This can be expressed
as

Wt 3¥,,=0, =0 7<O0. (4.16)

The solution to the biharmonic equation with (4.16) replacing (3.25), is much more compli-
cated than the present case and will be discussed in a subsequent paper.

5. SOLUTION FOR FINITE AXIAL EXTENSION
If the axial extension parameter / is not assumed to be near unity, the transition layer is
governed by equation (3.20). Solutions to this equation which satisfy the boundary and
matching conditions (3.22)—(3.26) are (for simplicity the " is eliminated from #)

2 + l o0
Y = _,1(1 ) Fo T ki S+ Y (aemM 1he Msin gt (S.1)

2 )P 1 J1 k=0
for p = 0 and
Y= —y (i _ 1) _f%_ _nr — ks =+ Z (A, €™ + B, e"Nsin 8, (5.2)
2 LIP? 1 /1 k=0

for n < 0, where

T
=k + 1=
b= (2K +1)

A A

My = [5 + \/(5)2 - 1]1/25,( = rlé,, (53)
AN,

el B o

The constants a,, b,, A4,, B, are found by matching ¥, ¥,, ¥,, and ¥, at n = 0, which
gives the equations

X(ay + by)sin 0,1 = X(A, + By)sin 5, t

1 72
—X(@ e + by v )sin 8, T = Z(Ay fty + By v)sin 8,7 + —55 NEE (? - r) [®0]

(ay, pi + b, vi)sin 8,1 = (A, pf + B, vi)sin &t

I
—X(a pi +b,vi)sin 6,1 = Z(Agui + Byvi)sin 6,1+ — 7 [ko]. (5.4

_\//



Finite elastic deformations of thin cylindrical tubes by mandrels with discontinuous curvature 1387

The first and third of these equations give a, = 4,, b, = B,, and the second and fourth give

S A R
e A WA WAL

[Ko] ( lo ry )
B, =b, = .
y o Sir 2(" 1 ) \/l Il 32
It can be seen from the form of equation (5.1) that the solution obtained in the previous

section for / = 1 cannot be found from the results of this section by taking the limit /— 1.
The cord tension is found by substituting (5.1) into (3.15). This gives, for <0,

(5.5)

- r}+ 13 r3 +112 ,
2= 1(3) 32 kZO 5k S 5’( { 1 ; et Bk ) © k"} * ZZ(- OO) (5'6)
and forn > 0
1 © 2 ”2 2 +”2
Zy =73353 2. Ssindy {Akr‘ TR0 _emmmy 4 g2 0 —e_""”)} + Z,(0). (5.7)
131" =0 r r,

When 5 = 0, the series in (5.6) can be summed, and it can be shown that

1 1
240 = 1xa] {ags + 5| + 2o~ o). 58
0
Substituting this result into (5.7), setting = +co, and summing the resulting series gives
1
(23] = Zu(+0) = Zu(—0) = beal g + 7 (59)

This agrees with the result obtained in[10] for the jump in cord tension across a discontinuity
in curvature for the case when T, =0, T;(0) =0, / & 1.
The stress X,; can be determined from (3.28) and is given by

)3 1 l T

Z—ICI +P—8{ (t——l)( 313);:_lfl(u—zq.rf)é%Ake*“"”cosékr
0

Iz

VI

where the upper sign applies for n > 0 and the lower sign forn <0.Asp— 4+ worg— —

1
¥ (”—2 + r§) 82 B e™ ™ cos §, ‘L'} (5.10)
4]

b4

P p { x(t 1)( : )} 5.11
— —>eikg(t — —_— .
2C 0 INEE (5.11)
which are the values of the stress on either side of the discontinuity, as given in[10].

When 5 = 0, the series in (5.10) can be summed, and the stress, either from the expression
for n = 0 or for n < 0, reduces to

Zi(r, 0)

©0 4 p- E{Jf(xg + x5 )t — 1)(170 "%)}

It can be seen from (5.3), ; that r, and r, are real if and only if 1 > 2, so that solutions of
the form (5.1) are valid only for A > 2, which is assured by (3.21).
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A6crpakT — Touxas, UHINHAPHYECKas, ynpyras TpyOa, yCHIIeHHas! Ha BHEILHEH TOBEPXHOCTH
IBYX MApaMETPHYECKHX CEMENCTBOM HEPACTSXKHMBIX KAHATOB, 1ehOpMHUpYeETCs TakKuMm 0Opa-
30M, YTO BHYTpDEHHas ITOBEPXHOCTh NPHHHMMACT 3apaHHylo dopmy. Ilpenpinyinme peigeHue
3TOH 3a0avd, BaXHOE TONbKO, KOTZa KpUBU3HA AehOPMUPOBAaHHOR BHYTPEHHOH ITOBEPXHOCTH
HempepbIBHA Beerna, 06001ueHo x 6onee obmeMy cityyaro, AJisi KOTOPOTO KpHBH3HA obnanaeT
paspbiBamu, [lpuMensieTcs MeTon MOgOOPaHHBIX aCHMIITOMHYECKHX PAa3NIOKEHHA ¢ LIENbIO
TIOCTPOEHHUS TELICHUS B OKPYKHOCTH Pa3pPbIBOB H ¢ LIENIbIO CBS3AHHSA €TI0 IVIAJKO C paHblIEM
PpeELIEHHEM, KOTOPOE, KaK, YKa3aHO, COXPAHSIET BaKHOCTh HAJIEKO OT pa3pbiBOB.

OmnucaHHas 3necs nedopMalis IPOUCXOIAT Ha MPHAMep, KOraa yCWJIeHHas ynpyras 1pyba
nedhopMHpOBaHa BCIIEACTBHE 3aKIIOYEHHOM XECTKO TpeccpOpMbl UM ONPABKU M HAXOTHUTCS
non BIMSHHEM BHEIUHErO JaBJICHHA.



